A first-in-human, multicenter, open-label, phase 1 study of ATOR-1017, a 4-1BB antibody, in patients with advanced solid malignancies

Gustav J. Ullenhag¹*, Jeffrey Yachnin², Ana Carneiro³, Lena Schultz⁴, Peter Ellmark⁴, Karin Enell Smith⁴, Tina Hjorth⁴, Tova Landström⁴

1 Uppsala University Hospital, Uppsala, Sweden; 2 Karolinska Institutet, Stockholm, Sweden; 3 Skane University, Lund, Sweden; 4 Alligator Bioscience AB, Lund, Sweden *Presenting and corresponding author; gustav.ullenhag@igp.uu.se

INTRODUCTION

- 4-1BB is a co-stimulatory receptor highly expressed on tumor reactive CD8+ T cells and NK cells infiltrating the tumor.
- 4-1BB co-stimulation activates cytotoxic T cell and NK cell-mediated anti-tumor responses as well as induction of a long-lived memory T cell responses that may lead to long-term protection from tumor recurrence.

4-1BB agonist

Figure 1. ATOR-1017 4-1BB antibody agonist and mechanism of action

ATOR-1017 is designed for superior efficacy and safety

- ATOR-1017 is a monoclonal antibody (IgG4) dependent on FcyR-mediated crosslinking for its activity.
- Co-localized expression of 4-1BB and FcyRs in tumors results in tumor-directed immune activation, hence less risk of systemic toxicity.
- ATOR-1017 blocks endogenous 4-1BB ligand by binding to the same domain thereby potentially reducing the risk of exaggerated pharmacology.
- No safety concerns were demonstrated in non-human primate toxicity studies.

OBJECTIVES

- The primary objective of this Ph1 trial includes characterization of the safety and tolerability of ATOR-1017 and determination of maximum tolerated dose (MTD).
- Secondary objectives include the establishment of a pharmacokinetic profile, evaluation of immunogenicity and anti-tumor activity of ATOR-1017.
- Exploratory objectives include the assessment of potential pharmacodynamic biomarkers.

ASCO 2021 Poster 2646

Copies of this poster obtained through Quick Response (QR) Code are for personal use only and may not be reproduced without permission from ASCO® and the author of this poster.

STUDY DESIGN

- This is a first-in-human, multicenter, open-label dose-escalating trial of ATOR-1017 conducted in patients with advanced solid malignancies (NCT04144842).
- Patients received IV infusions every three weeks, flat doses starting at 0.38 mg.
- Dose escalation started with an accelerated phase consisting of single-patient cohorts up to 40 mg, followed by a modified 3+3 design (Figure 2), with at least 6 patients at MTD.
- Intrapatient dose escalation is allowed after the first 2 treatment cycles according to the judgment of the Investigator up to a dose level declared safe by the data review
- First patient was dosed Dec 2019. Dose level at data cut-off (March 31st, 2021) was 200 mg and the study is still ongoing.
- Efficacy was assessed by computed tomography (CT) at weeks 6 and 12 (-7 days) and thereafter every 12th week until disease progression.

Key inclusion criteria:

- ≥ 18 years of age
- Histologically or cytologically confirmed, metastatic or unresectable advanced and/or refractory solid malignancy. Have received SoC with no further therapeutic options
- ECOG performance status of 0 or 1 Measurable disease according to RECIST 1.1

Figure 2. Trial design (dose escalation)

RESULTS

Patient characteristics and disposition

- > As of data cut-off March 31st, 2021, a total of 13 patients have been enrolled and treatment is ongoing in 4 (30.8 %) patients (Table 1).
- The study is ongoing and MTD has not been reached.

Table 1. Baseline demographics and clinical characteristics

	Overall
Number of patients	13
Median (range) age, years	49 (39-63)
Age Group, n (%) 18 - 64 65 +	10 (76.9) 3 (23.1)
Previous SoC therapies, median (range), n	2 (1-6)
ECOG Performance status, n (%) 1 0	5 (38.5) 8 (61.5)

Efficacy

- > As of data cut-off March 31st, 2021, 4 patients (30.8 %) remain on treatment, 3 of whom (23 %) have confirmed stable disease for a period of 3.5-12.5 months (Figure 3).
- One patient, 17-002, has received 5 increasing dose levels and has been on the study for 60 weeks.
- 5 patients (38.5 %) have confirmed disease progression and have discontinued

Figure 3. Swimmers plot for dose escalation trial of ATOR-1017

Pharmacokinetics

- Single dose IV infusion shows dose dependent linear clearance (Figure 4).
- Repeat dosing (Q3W) demonstrates stable elimination and no apparent accumulation (Figure 5).

Figure 4. Single dose PK profile for ATOR-1017

Figure 5. Repeat dose PK profile for ATOR-1017; representative graph from patient 17-010, 100 mg for the first 7 cycles

Pharmacodynamics

- Induction of target-mediated immune modulation by ATOR-1017 was observed in the periphery at doses above 40 mg.
- A 4-1BB-mediated proof of mechanism was demonstrated by increased numbers of activated proliferating (Ki67+) CD8+ T cells, effector memory CD8+ T cells and (ICOS+) CD8+ T cells (Figure 6).

- Treatment-emergent adverse events (TEAEs) occurred in 11 (84.6 %) patients. Most TEAEs were Grade 1-2, with Grade 3 being experienced by 3 (27.3 %) patients and Grade 4 by 1 (9.1 %) patient. No patient experienced a Grade 5 TEAE (Table 2).
- Treatment-related adverse events (TRAEs) occurred in 7 (53.8 %) patients. Grade 3 TRAEs were experienced by 1 (14.3 %) patient and Grade 4 TRAEs by 1 patient (14.3 %). No patient experienced a Grade 5 TRAE (Table 2).
- Adverse events of special interest (AESI) include infusion-related reactions, cytokine release syndrome, immune-related adverse events, liver enzyme and bilirubin elevation. Transient neutropenia and transaminase elevations were experienced by 2 (15.4 %) patients (Table 2).
- No dose-limiting toxicity (DLT) was observed at the time of data cut-off March 31st, 2021.

Table 2. Overall summary of treatment-emergent adverse events

	ATOR-1017 dose level (mg)					
	0.38 - 15	40	100	200	Overall	
Number of patients	4	3	3	3	13	
Patients with any TEAEs, n (%)	4 (100)	3 (100)	3 (100)	1 (33.3)	11 (84.6)	
TEAEs of severity Grade 3 or 4, n (%)	1 (25)	2 (66.7)	0	1 (33.3)	4 (36.4)	
Patients with any TRAEs, n (%)	2 (50)	3 (100)	1 (33.3)	1 (33.3)	7 (53.8)	
TRAEs of severity Grade 3 or 4, n (%)	0	1 (33.3)	0	1 (33.3)	2 (28.6)	
Patients with any AESI, n (%)	0	1 (33.3)	0	1 (33.3)	2 (15.4)	

CONCLUSIONS

- ATOR-1017 has been dosed up to 200 mg and demonstrates an encouraging safety profile.
- No DLTs were observed.
- Most TRAEs were mild to moderate (one transient Grade 4 and no Grade 5 observed).
- ATOR-1017 exhibits a favorable PK profile with linear elimination and no accumulation at all doses tested.
- Activation of T cells in the circulation was observed across active dose levels of ATOR-1017 demonstrating biological activity and proof of mechanism.
- The study is still ongoing; no MTD reached.
- **ACKNOWLEDGEMENTS:** The patients and their families. The study investigators and members of the clinical study team. Alligator Bioscience AB, the study sponsor, and the clinical study team at Alligator.
- > DISCLOSURES: None

