ALLIGATOR bioscience

Company presentation

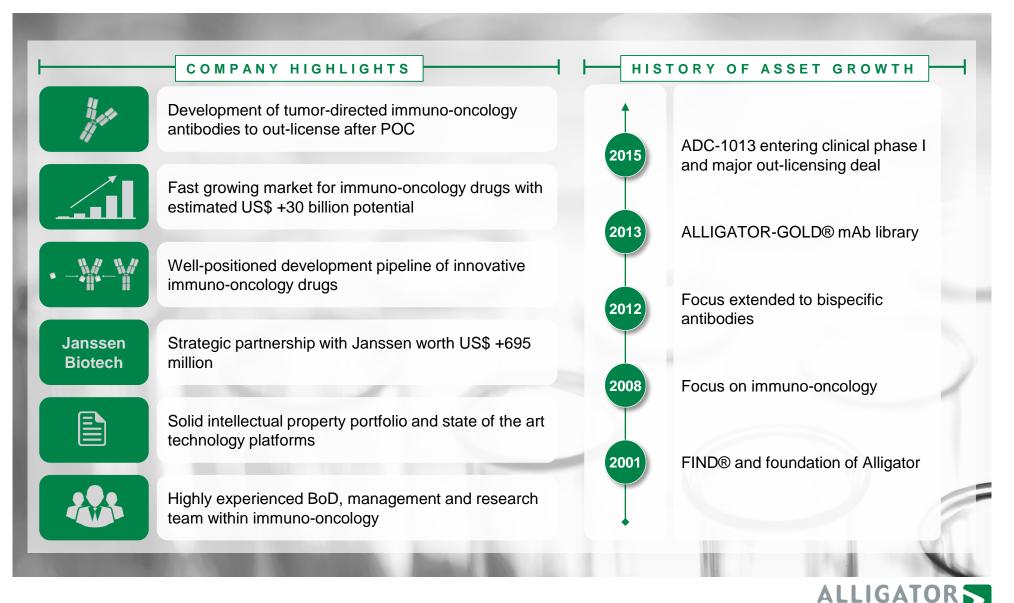
Biotech Showcase, San Fransisco, 10 January 2017 Per Norlén, CEO

Disclaimer

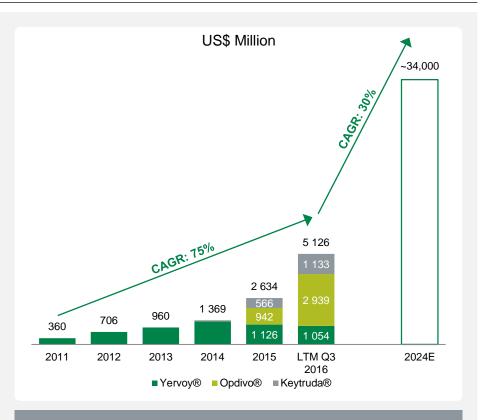
This presentation regarding Alligator Bioscience AB ("Alligator") and its contents are confidential and may not be reproduced, redistributed or passed on, directly or indirectly, to any other person or published, in whole or in part, by any medium or for any purpose.

This presentation does not constitute or form part of any offer or invitation to purchase or subscribe for, or any offer to underwrite or otherwise acquire any shares in Alligator or any other securities. Neither shall the presentation or any part of it, nor the fact of its distribution or communication, form the basis of, or be relied on in connection with, any contract, commitment or investment decision in relation thereto.

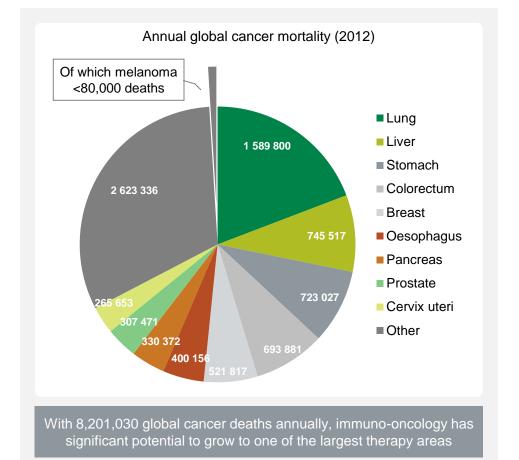
This presentation contains forward-looking statements, which are subject to risks and uncertainties because they relate to expectations, beliefs, projections, future plans and strategies, anticipated events or trends and similar expressions concerning matters that are not historical facts. Such forward-looking statements involve known and unknown risks, uncertainties and other factors, which may cause the actual results, performance or achievements of Alligator or the industry in which it operates, to be materially different than any future results, performance or achievements expressed or implied by such forward-looking statements. Given these risks, uncertainties and other factors, recipients of this presentation are cautioned not to place undue reliance on these forward-looking statements. The forward-looking statements referred to above speak only as at the date of the presentation. Alligator will not undertake any obligation to release publicly any revisions or updates to these forward-looking statements to reflect future events, circumstances, anticipated events, new information or otherwise except as required by law or by any appropriate regulatory authority.


This presentation speaks as of January 2017. The information included in this presentation may be subject to updating, completion, revision and amendment and such information may change materially. No person, including Alligator and its advisors, is under any obligation to update or keep current the information contained in this presentation and any opinions expressed in relation thereto are subject to change without notice. Neither Alligator nor any of its owners, affiliates, advisors or representatives (jointly the "Disclosers") make any guarantee, representation or warranty, express or implied, as to the accuracy, completeness or fairness of the information and opinions contained in this presentation, and no reliance should be placed on such information. None of the Disclosers accept any responsibility or liability whatsoever for any loss howsoever arising from any use of this presentation or its contents or otherwise arising in connection therewith.

This presentation is subject to Swedish law and any dispute arising in respect of this presentation is subject to the exclusive jurisdiction of the Swedish courts.


By attending this presentation or by accepting any copy of this document, you agree to be bound by the foregoing limitations.

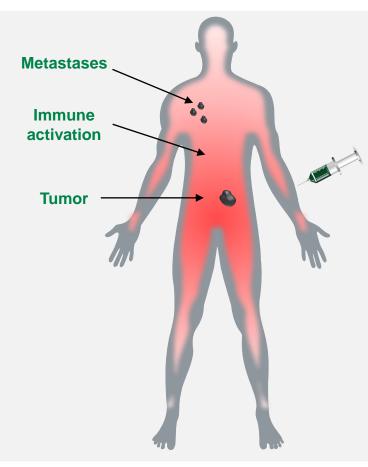
Alligator Bioscience in brief

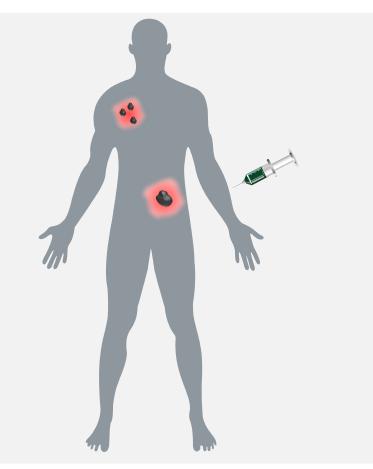


Rapid uptake and development within the field of immuno-oncology

Sales of existing immuno-oncology treatments

Existing drugs showing strong uptake despite a high treatment price and relatively few cancer indications on label Market potential for immuno-oncology




Consensus estimates the I-O market to hold the largest upside potential within the global pharmaceutical market

Source: Bristol – Myers Squibb; Merck & Co; GlobalData, WHO World Cancer Report 2014

Introduction to tumor-directed immuno-oncology

SYSTEMIC IMMUNO-ACTIVATION

Systemic administration of immunotherapeutic drugs results in general activation of the immune system, which may lead to severe side effects

TUMOR-DIRECTED IMMUNO-ACTIVATION

Selective activation of tumor-specific immune cells results in a systemic immune-mediated anti-tumor attack with limited toxicity.

Fully integrated technology platforms

ALLIGATOR-GOLI	D®	FIND®
ALLIGATOR-GOLD® is single-chain library with lar	-	chnology is used to optimize other proteins characteristics
DIVERSITY > 1010	OPTIMIZATION	 PRODUCT CANDIDATE Increased tumor retention Increased affinity Improved safety profile Decreased antigenicity Improved developability

Technology platforms will enable Alligator to continue to develop innovative antibodies for years to come

Extensive collaboration with distinguished immuno-oncologists

Partners and major deliverables

Stanford University	Navarra University	Lund University	Uppsala University	University of Manchester	EU/TIMCC	The Royal Institute of Technology
 Pre-clinical In- vivo proof of concept supporting ADC- 1015 and research programs 	 In-vitro and in- vivo characterization of Alligator compounds supporting ADC- 1016 and research programs 	 DC and T-cell assays used for characterization of ADC-1013 Next generation sequencing 	 In-vivo proof of concept (ADC-1013) Supporting research programs 	 Characterization of tumor targeting antibodies supporting ADC- 1016 and research programs 	 Academic network of 6 leading groups from European Universities To characterize the tumor infiltrating myeloid cell compartment 	 Identification and characterization of novel immune modulating targets
4	Gina circle systemic immunothera	inical d and UPFSALA UNIVERSITET	and the second	PETER L. STERN PhD, Professor Expert in tumor targets for cancer immunotherapy	JEFFR WEBE MD, PI Profes Expert clinical oncolo	R hD, sor in immuno-

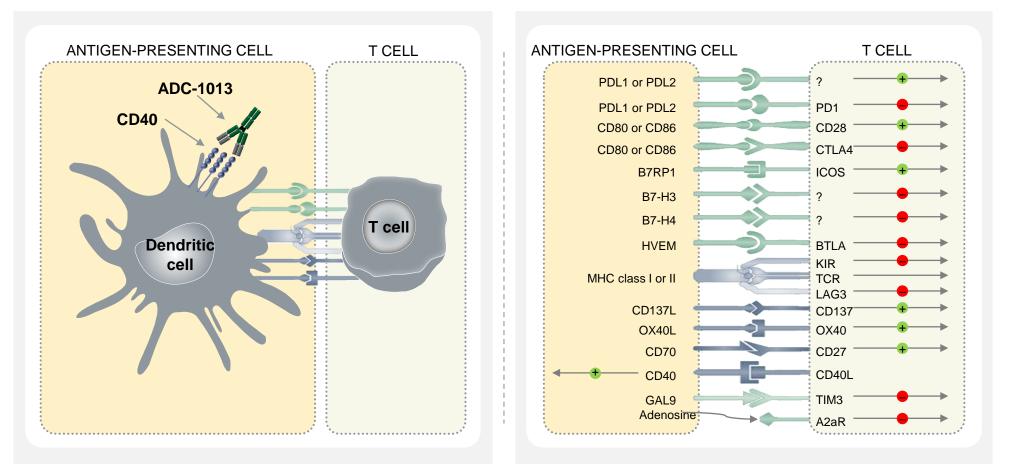
Alligator will strive to increase the number of collaborations with both universities and small to mid-size biotechs

Well-positioned drug development pipeline

Pipeline of immuno-stimulating mono- and bi-specific antibodies targeting TNFR superfamily

RESEARCH	PRE-CLINICAL DEVELOPMENT	PHASE I	PHASE II
ADC-1013* (CD40)			
ATOR-1015 (OX40/CTLA-4)			
ATOR-1016 (TNFR-SF/TAA)			
(TNFR-SF)			
(TNFR-SF/ND)			

TNFR-SF: Tumor Necrosis Factor Receptor-Superfamily TAA: Tumor-Associated Antigen ND: Not Disclosed *Partnered with Janssen Biotech Inc., developed as JNJ-64457107


All product candidates suitable for combination therapy with other I-O drugs, e.g. anti-PD-1 and anti-PD-L1

ADC-1013: CD40 is a key immuno-oncology target

ADC-1013 Mode of Action

Immuno-modulating receptors

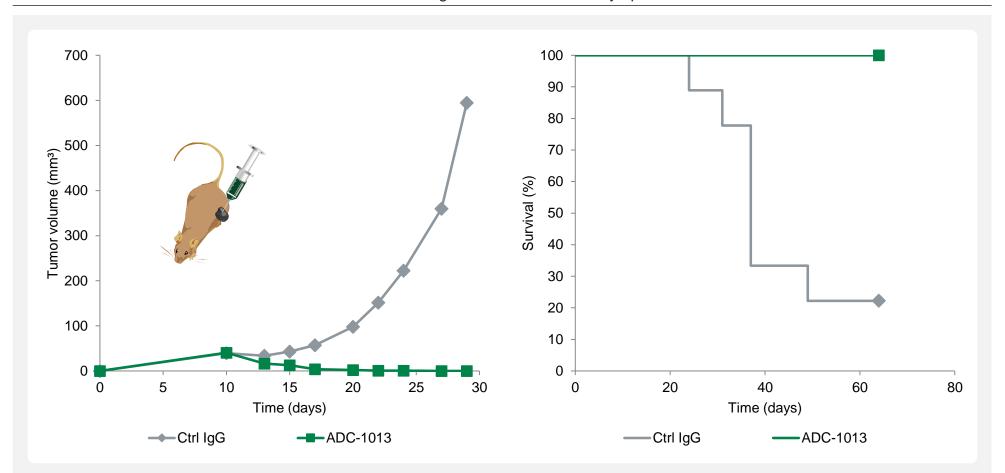
CD40 is the only defined receptor that selectively activates the antigen-presenting cell and is a highly promising target for combination with T-cell activating antibodies such as PD-1 and CTLA-4

Source: Pardoll, Nature Reviews Cancer, 2012

ADC-1013: One of four CD40 mAbs in clinical phase

Selection of antibody based immuno-oncology drugs in clinical development

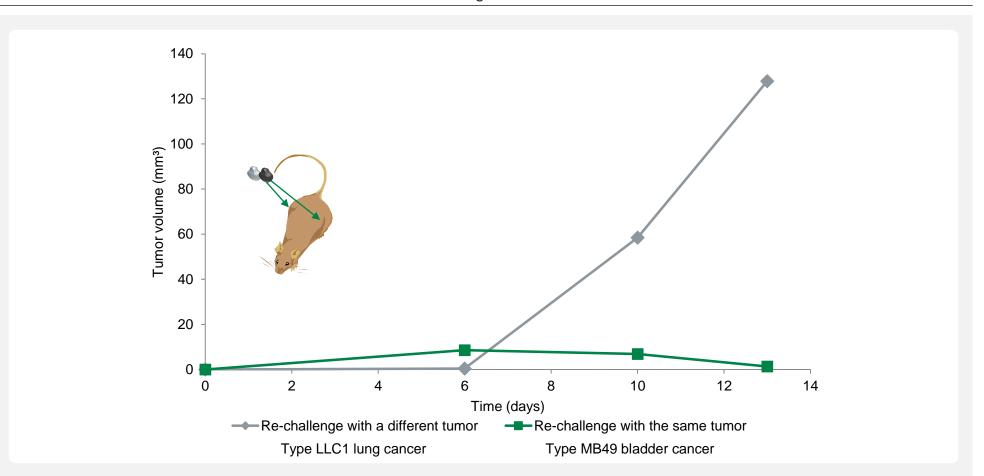
A	D			T
Company	Drug	Indication	Phase	Target
AstraZeneca (MedImmune)	durvalumab	NSCLC, H&N, bladder	III	PD-L1
Pfizer & AstraZeneca	tremelimumab	Mesothelioma, NSCLC, bladder	III	CTLA-4
Pfizer & MerckSerono	avelumab	NSCLC, GI, bladder	111	PD-L1
Prima Biomed (Immutep)	IMP-321	Breast	III	LAG3
AstraZeneca (MedImmune)	MEDI-0680	BCL, NHL, melanoma, CRC	II	PD-1
CureTech	pidilizumab	BCL, NHL, melanoma, CRC	II	PD-1
Jiangsu Hengrui Medicine (Incyte)	INCSHR-1210	Solid tumors	II	PD-1
Novartis	PDR-001	NSCLC, CRC, GI, melanoma	II	PD-1
Regeneron	REGN2810	Melaonoma	II	PD-1
AgonOx (AstraZeneca)	MEDI-6469	Breast, prostate, lymphoma	II	OX40
Bristol-Myers Squibb	BMS-986178	Solid tumors	П	OX40
Bristol-Myers Squibb	urelumab	Solid tumors and lymphoma	II	CD137
Celldex	varlilumab	Solid tumors	II	CD27
Novartis	LAG-525	Solid tumors	11	LAG3
Novartis	MBG-453	Cancer	Ш	TIM-3
Alligator Bioscience	ADC-1013	Solid tumors		CD40
Apexigen	APX-005M	Lymphoma	1	CD40
Roche	RG-7876	Solid tumors	i	CD40
Seattle Genetics	SEA-CD40	Solid tumors	i	CD40
Bristol-Myers Squibb	BMS-986016	Solid tumors, lymphoma and leukemia	I	LAG3
Merck	MK-4280	Cancer	1	LAG3
Novartis (Immutep)	IMP-701	Cancer	I	LAG3
Pfizer	PFE-1, PF-05082566	Solid tumors and lymphoma	i	CD137
Agenus and Incyte	INCAGN1876	Solid tumors	1	GITR
Amgen	AMG-228	Solid tumors	i	GITR
AstraZeneca	MEDI-1873	Solid tumors	1	GITR
Bristol-Myers Squibb	BMS-986156	Solid tumors	i	GITR
GITR Inc	TRX-518	Solid tumors and melanoma	1	GITR
Merck	MK-4166	Solid tumors	i	GITR
Merck	MK-1248	Cancer	1	GITR
Novartis	GWN-223	Solid tumors and lymphoma	i	GITR
AstraZeneca	MEDI-0562	Cancer		OX40
GlaxoSmithKline	GSK-3174998	Cancer	i	OX40
Pfizer	PF-04518600	Cancer		OX40
Roche	RG7888	Solid tumors	i	OX40
Merck	M-7824	Solid tumors		PD-L1 and TGF-β
Bristol-Myers Squibb	MDX-1105	Solid tumors		PD-L1
BeiGene	BGB-A317	Cancer		PD-1
GlaxoSmithKline (Amplimmune)	AMP-224	Cancer	1	PD-1
Regeneron	REGN-2810	Solid tumors, BCL		PD-1
Daiichi Sankyo	DS-5573	Solid tumors	1	B7-H3
		Solid tumors	1	B7-H3 B7-H3
Macrogenics	Enoblituzumab GSK-3359609		1	ICOS
GlaxoSmithKline		Cancer	1	
Jounce Therapeutics	JTX-2011	Cancer		ICOS
Tesaro / Anaptys	TSR-022	Cancer	I	TIM-3


Comments

- Approx. 70 immuno-oncology drugs are currently in clinical development
- Extensive focus on first generation targets PD-1 and PD-L1
- Four ongoing trials of by commercial companies targeting the CD40 receptor with monospecific agonistic antibodies, including Alligator's ADC-1013

ADC-1013: Anti-tumor effect in lymphoma model

Results from single tumor model in A20 lymphoma



ADC-1013 induces significant anti-tumor effects in a hCD40 negative lymphoma model (A20)

ADC-1013: Long term immunity in bladder model

Results from rechallenge in a twin-tumor model

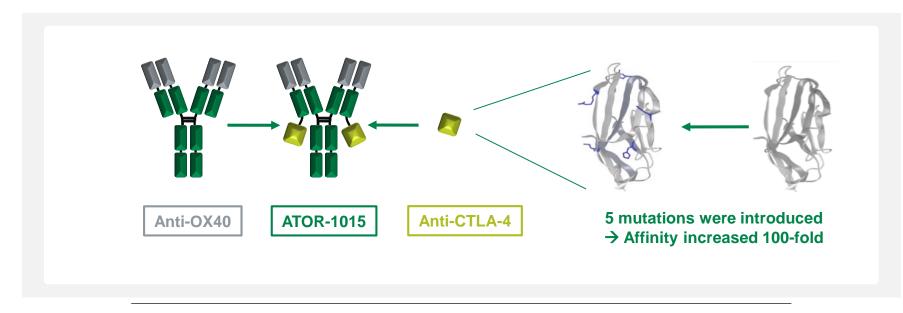
Mice previously treated with ADC-1013 exhibit tumor immunity to identified tumor type

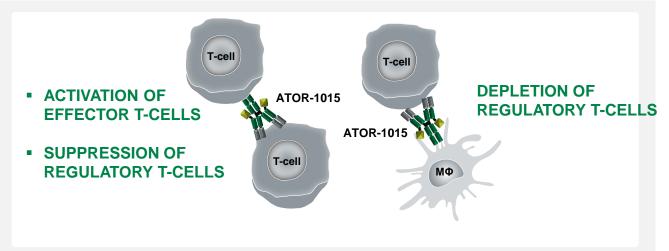
Source: Mangsbo et al 2015, Clinical Cancer Research

ADC-1013: Partnership with Janssen validating Alligator's model

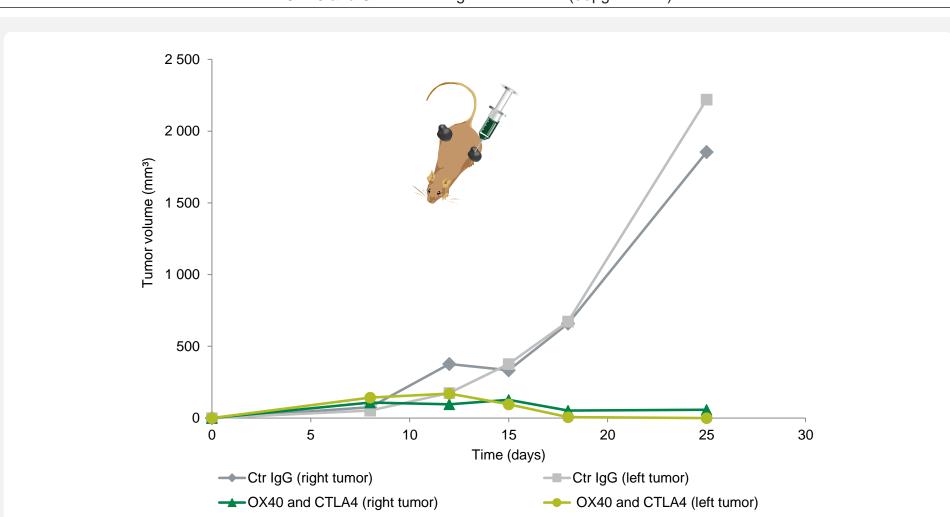
Partnership details for ADC-1013

Description of ongoing Phase I trial

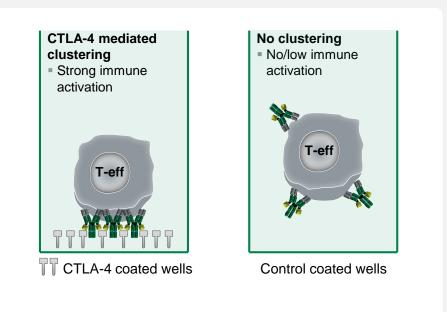

 Description of agreement Exclusive world-wide license to ADC-1013 Alligator sponsor for the ongoing Phase I clinical trial Additional phase I study initiated by Janssen 	 Royalty / Milestone potential Up-front payment plus additional milestones up to a potential total of US\$695 million Tiered high single-digit to low double digit royalties on worldwide net sales upon successful launch 		
en velopment costs ed by Janssen	successful launch	Dosing & administration	administration endpoint
		 FiH, first dose April 2015 Dose escalation 	April 2015 tolerability


Highly attractive out-licensing terms with Janssen showing commitment through extension of clinical scope to systemic administration

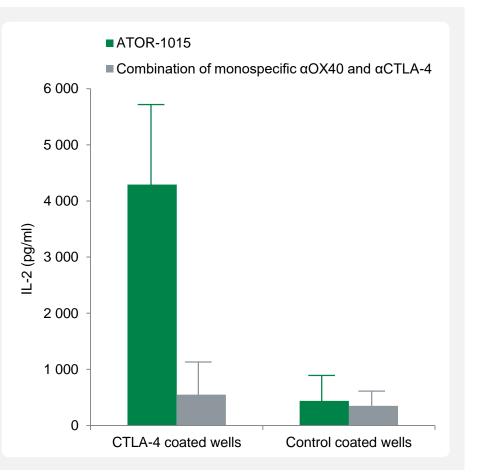
= All


ATOR-1015: Biological rationale for dual binding OX40 and CTLA-4

ATOR-1015: Combining OX40 with CTLA-4 (1/3)

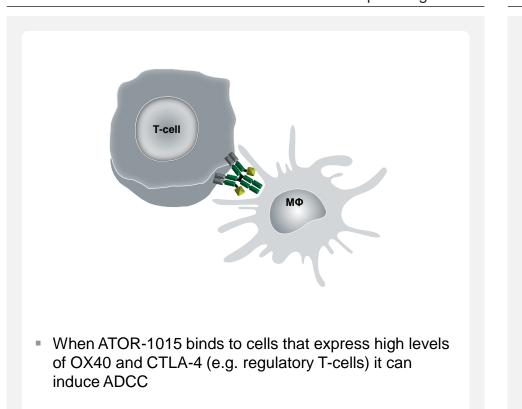


OX40 and CTLA-4 surrogate antibodies (30µg of each)

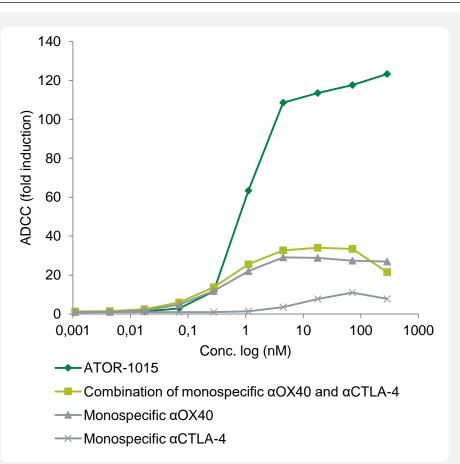

ATOR-1015: Combining OX40 with CTLA-4 (2/3)

CTLA-4 mediated clustering of OX40

Synergistic T-eff activation


- When ATOR-1015 binds to CTLA-4 coated on the surface of a well it induces extensive cross-linking of OX40 on the T-cells resulting in a very strong immune activation
- The activation is superior to the combination of the monospecific αOX40 and αCTLA-4 binders

The effect of the bispecific antibody is superior to the effect of the combination of the monospecific antibodies – the effect is cross-linking dependent

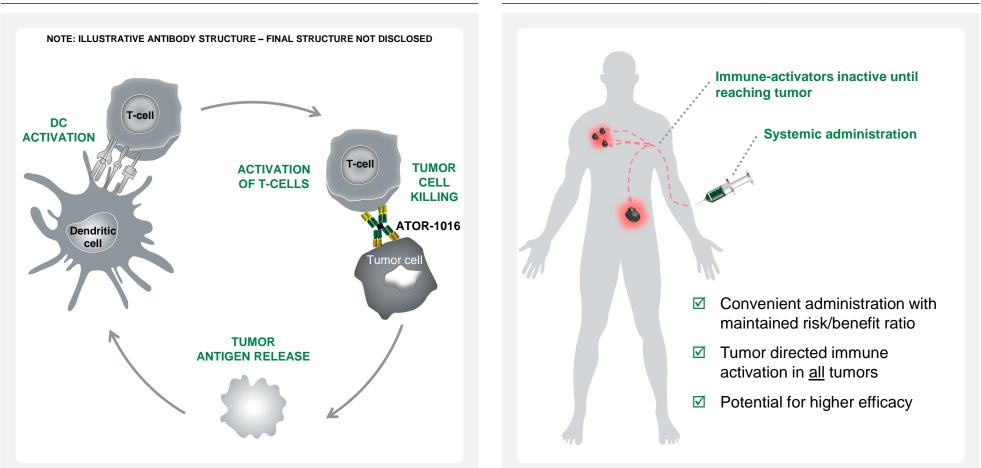


ATOR-1015: Combining OX40 with CTLA-4 (3/3)

ATOR-1015 induces ADCC on CTLA-4/OX40 expressing cells

The ability to induce ADCC is superior to the combination of the monospecific αOX40 and αCTLA-4 binders

Synergistic T-cell depletion


The effect of the bispecific antibody is superior to the effect of the combination of the monospecific antibodies

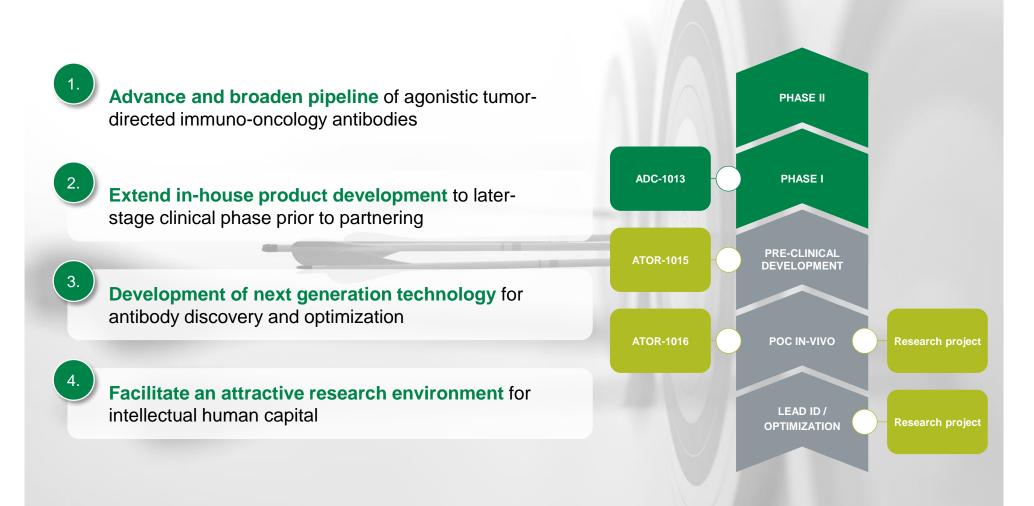
Source: Patent application: 1605450.4. map ATOR-1015

ATOR-1016: Localizing tumor-directed immunotherapy

Mode of Action

Major benefits of localizing immune-activators

Localizing tumor-directed immunotherapy has substantial potential in cancers with multiple metastases



Solid intellectual property portfolio

- More than 50 approved and/or pending patents
- Seven product patent families, including ADC-1013
- Solid IP position for ADC-1013 with patent coverage at least until 2032
- Four technology patent families, including FIND® and ALLIGATOR-GOLD®
- Covering all major markets (US, EU, Japan, BRIC)

Strategy to maximize shareholder value

ALLIGATOR bioscience

Thank You